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The uniform motion of a mass along an axially compressed Euler–Bernoulli beam on
a viscoelastic foundation is investigated. It is assumed that the mass is subjected to a
constant vertical load and that the beam and mass are in continuous contact. The velocity
of the mass after which the vibrations of the system are unstable is found. The instability
implies that the amplitude of the mass vibrations is growing exponentially and that the
problem does not have a steady state solution. It is shown that the instability starts at lower
velocities as the compresional force increases. The instability occurs even for over-critical
viscosities of the foundation when there is no dynamical amplification of the steady state
vibrations due to resonance.
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1. INTRODUCTION

The instability of vibrations of a mass moving uniformly along a continuously supported
beam was found first by Denisov et al. [1]. The results obtained indicated that there is a
velocity after which the amplitude of the mass vibrations grows exponentially even if there
is a non-zero viscosity of the beam foundation. Mathematically, the exponential growth
implies that the problem does not have a steady state solution. The physical explanation
of the phenomenon was given in reference [2], where it was shown that the instability is
caused by anomalous Doppler waves [3], radiated by the moving object.

In earlier investigations of the instability of a moving mechanical object interacting with
an elastic system, the object was assumed to be distributed [4, 5]. The instability of a point
object can be considered as the basic phenomenon for this situation.

This paper is mainly concerned with the effect of compressional axial stresses in the beam
on the instability phenomenon. It is of practical importance for continuously welded
tracks, where a temperature increase can cause considerable axial compressional forces.
One can expect that the instability takes place for lower velocities as the compressional
force increases. Indeed, in references [1, 2] it was shown that the instability can occur if
the velocity of the mass is larger than the minimum phase velocity Vmin

ph of waves in the
beam. Furthermore, Kerr [6] has shown that Vmin

ph decreases as the compressional force
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increases. Therefore the compressioal stresses can probably reduce the velocity at which
the instability starts. It is shown in this paper that this is indeed the case.

Furthermore, the effect of the viscosity of the foundation on the instability phenomenon
is investigated. It is shown that due to the viscosity the instability domain moves to an
area of larger velocities and masses. It is important to underline that, even with viscosity
in the system, the amplitude of vibrations can grow exponentially in time, resulting in an
infinite displacement when time goes to infinity (in the frame of the linear model). This
is quite different from the effect of viscosity on the amplitude of beam vibrations at a
resonance caused by a load. In this case the amplitude of vibrations decreases when the
viscosity increases.

2. MODEL AND GENERAL SOLUTION

Consider a uniform motion of a mass along an axially compressed Euler–Bernoulli beam
on a viscoelastic foundation. It is assumed that the mass and the beam are in continuous
contact and a vertical constant force acts on the moving mass. The model is depicted in
Figure 1.

The equations of motion for the model are

r
12U	
1t2 +EI

14U	
1x4 +N

12U	
1x2 + m

1U	
1t

+ xU	 =−0m d2U	 0

dt2 +P1d(x−Vt),

U	 0(t)=U	 (Vt, t), (1)

where U	 (x, t) and U	 0(t) are the vertical deflections of the beam and the mass respectively,
r and EI are the mass per unit length and the bending stiffness of the beam, N is the
compressional force m and x are the viscosity and the stiffness of the foundation per unit
length, m is the mass of the body, V is the velocity of the body, P is the vertical force and
d(· · ·) is the Dirac delta function. The units of the parameters are [r]=kg/m, [EI ]=N m2,
[N]=N, [m]=kg/(m s), [x]=kg/(m s2), [m]=kg, [V ]=m/s, [P]=N and [d(x)]=1/m.

Introducing dimensionless variables and parameters by the definitions

t= tzx/r, y= x(4EI/x)−1/4, {U, U0}= {U	 , U	 0}(4EI/x)−1/4,

a=V(4xEI/r2)−1/4, T=N(4EIx)−1/2, n= m(rx)−1/2, M=m(4EI/x)−1/4/r,

and

F=P(4EI/x)−1/2/x,

one can rewrite equation (1) as

12U
1t2 +

1
4

14U
1y4 +T

12U
1y2 + n

1U
1t

+U=−0M d2U0

dt2 +F1d(y− at), U0(t)=U(at, t). (2)

Figure 1. The uniform motion of a mass (subjected to a constant vertical force) along a beam on a viscoelastic
foundation.
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For the analysis it is convenient to introduce a moving reference system
{j= y− at, t= t}. In this system, the first of equations (2) takes the form (see
reference [7])

12U
1t2 +

1
4

14U
1j4 + (T+ a2)

12U
1j2 −2a

12U
1t1j

+ n
1U
1t

− na
1U
1j

+U=−0M 12U
1t2 +F1d(j). (3)

The advantage of equation (3) is that the Dirac delta function is independent of time and
on the right side of the equation one has 12U/1t2 instead of d2U0/dt2 (this is due to the
equality d2U0/dt2 = 12U/1t2 +2a12U/1t1y+ a212U/1y2=y= at , which has to be rewritten in
the moving reference system).

As boundary conditions one requires that the solution must vanish as j:2a. The
trivial initial conditions U(j, 0)=Ut(j, 0)=0 can be taken, since the initial shape of the
beam does not effect either the stability of the system or the steady state solution (in the
frame of the linear model).

Equation (3) can be solved by using the Fourier transform with respect to j and the
Laplace transform with respect to t. These transforms are

Wk,s(k, s)=g
a

−a

Vs(j, s) exp(−ikj) dj, Vs(j, s)=g
a

0

U(j, t) exp(−st) dt,

and applying them to equation (3) results in

D(k, s)Wk,s(k, s)=−(Ms2Vs(0, s)+F/s),

D(k, s)= s2 + (1/4)k4 − (T+ a2)k2 − siask+ ns−inak+1. (4)

Inverting the Fourier transform to obtain the solution in the Laplace domain yields

Vs(j, s)=−0Ms2Vs(0, s)+
F
s1 1

2p g
a

−a

exp(ikj) dk
D(k, s)

. (5)

To determine Vs(j, s) one has to know Vs(0, s), which is the Laplace image of U0(t).
Assuming j=0 in equation (5), one finds that

Vs(0, s)=−
F

s(Ms2 + xeq(s))
, xeq(s)=0 1

2p g
a

−a

dk
D(k, s)1

−1

. (6)

The expression for xeq determines the equivalent stiffness of the system (the beam on
foundation) under the moving body.

Substituting equations (6) into equation (5) yields

Vs(j, s)=−
F

2ps g
a

−a

exp(ikj)
D(k, s)

dk+
Ms2

Ms2 + xeq(s)
F

2ps g
a

−a

exp(ikj)
D(k, s)

dk. (7)

The first member of equation (7) describes the beam displacement under the constant load
(M=0). The second member is related to the beam deflection caused by the mass.
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3. INSTABILITY OF VIBRATIONS AND THE EFFECT OF THE COMPRESSIONAL
AXIAL FORCE

Now it can be shown that the second member of equation (7) can have a pole
s*= a+ib, with aq 0. This case physically implies that the beam displacement is growing
exponentially in time ((s− s*)−1/exp(t(a+ib))), so the beam vibrations are unstable. Note,
that it is assumed that NQ 2zxEI, so the instability is not related to an over-critical axial
compressional force (see reference [6]).

Consider the roots of the equation

Ms2 + xeq(s)=0. (8)

These roots determine the eigenfrequencies of vibrations of the moving mass as it interacts
with the beam. In fact, the goal is to determine whether or not equation (8) has a root
with a positive real part. To determine this, it is appropriate to use the D-decomposition
method [1, 7]. The idea of the method is to map the imaginary axis of the complex (s)-plane
on to the plane of a complex parameter M (here, initially the mass parameter M is regarded
as a complex parameter, without regard to its physical meaning). The mapped line will
divide the M-plane into domains with different numbers of roots with a positive real part.

Substituting s=iV (the imaginary axes of the (s)-plane) into equation (8) and expressing
M explicitly one obtains the following rule for the mapping,

M= xeq(iV)/V2, (9)

in which V is a real value which has to be varied from minus infinity to plus infinity. The
expression for xeq(iV) according to equations (4) and (6) is

xeq(iV)=0 1
2p g

a

−a

dk
D(k, iV)1

−1

,

D(k, iV)=−V2 + (1/4)k4 − (T+ a2)k2 +2aVk+inV−inak+1. (10)

By using the contour integration method the integral (10) can be developed and this
results in the expression (the contour of integration is closed along an infinite semicircle
in the upper half-plane of the complex variable k)

xeq(iV)=04i s
n

k− kn

(k− k1)(k− k2)(k− k3)(k− k4) bk= kn
1

−1

, (11)

where kn are the roots of the equation D(k, iV)=0 which possess a positive imaginary part.
All roots have an imaginary part and all of them are simple due to the viscosity of the
foundation of the beam.

Therefore, the final expression for the mapping is

M=
1

4iV2 0sn k− kn

(k− k1)(k− k2)(k− k3)(k− k4) bk= kn
1

−1

, (12)

Now, according to the D-decomposition method, one has to plot a curve Re(M) versus
Im(M) (according to equation (12)), using V as the parameter for this curve. This can easily
be done numerically with the help of any standard program for finding the complex roots
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Figure 2. Separation of the complex (M)-plane into domains with different numbers of roots with a positive
real part (the number of roots is shown in each domain). The parameters are n=0·001, T=0·5 and a=0·5.

of polynomials. This curve is depicted in Figure 2 and Figure 3 for n=0·001 (very small
viscosity) and T=0·5 (N=0·5Ncr). For Figure 2 the value of a has been taken as a=0·5
(V=0·5VN=0

cf , VN=0
cr being the critical velocity of the constant load along an axially

uncompressed beam) and, for Figure 3, a=0·9. One side of the lines in the figures is
shaded (this side is related to the right side of the imaginary axes in the (s)-plane). Crossing
of the lines in the direction of the shading implies that one has an additional root with
a positive real part.

It is seen from the figures that for a ‘‘small’’ velocity of the mass (Figure 2) the
mapped line does not cross the real axes of the (M)-plane as Re(M)q0. This
implies that for all physically relevant values of the mass (real and positive) the
number of ‘‘unstable’’ roots of the equation (8) is the same. Another situation
takes place for ‘‘large’’ velocities of the mass (Figure 3). In this case the mapped line
crosses the real axis of the (M)-plane twice at the point M*q 0. Therefore, one
has two more ‘‘unstable’’ roots for MqM* than for 0 QMQM* (see the direction
of the shading).

Now one has to derive the number of ‘‘unstable’’ roots for some particular
value of M because so far one knows only the relative number of ‘‘unstable’’ roots
in the different domains of the (M)-plane, but not the number itself. This can be done

Figure 3. Separation of the complex (M)-plane for n=0·001, T=0·5 and a=0·9.
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Figure 4. M*(a) for different compressional forces. Each curve separates the plane into two domains. The
domain located above a curve is associated with unstable vibrations of the beam.

numerically; for example, for M=0. Calculations show that in this case equation (8)
does not possess roots with a positive real part. Physically, this result is evident
since the instability is the result of an interaction between the moving body and the
beam (see reference [2]). Therefore, if the body is absent (M=0), instability cannot
occur.

Using this result and starting in the domains which include the point M:+0 (M is real),
one can determine the number of ‘‘unstable roots’’ for arbitrary M. These numbers are
depicted in Figures 2 and 3.

One can now easily see from the figures that for ‘‘small’’ velocities of the mass the beam
vibrations are stable for all M. However, if the velocity is ‘‘large’’, there exists a critical
value of the mass (M*), after which the vibrations become unstable.

In Figure 4 the dependency of this critical mass versus the velocity is depicted on the
plane (M, a) for different values of the compressional axial force in the beam (n=0·001).
The vertical lines in the figure are asymptots for the curves as M*:a. The following
conclusions can be drawn from the figure.

1. If the beam is not axially compressed, the instability can take place only for aq 1
(a=1\ V=(4xEI/r2)1/4). This result has been obtained in reference [1].

2. The instability starts at smaller velocities (for a fixed value of the mass) when the
compressional force increases.

3. The larger the mass, the smaller the velocity that can cause the instability.
Thus, vibrations of the beam interacting with the uniformly moving mass can be

unstable starting from some velocity Vinst
cr . This velocity decreases if an axial compressional

force acts on the beam. As shown in reference [2], the energy to increase the amplitude
of the vibrations is delivered by the energy source, maintaining the uniform motion of the
mass.

Mathematically the existence of roots with a positive real part of equation (8) implies
that the problem (1) does not possess a steady state solution.

If one applies the model to describe a train-wheel motion along a rail, the contact
between the wheel and the rail is not necessarily continuous. Therefore, the instability
should be considered as one of the reasons for the loss of contact.
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4. EFFECT OF VISCOSITY ON INSTABILITY AND RESONANCE

As shown in the previous section, there is a critical velocity Vinst
cr after which instability

can occur. If one neglects the viscosity (n:0) this velocity can be found analytically to
give the expression Vinst

cr =(4xEI/r2 −N/r)1/4. This expression is exactly the same as the one
which has been obtained by Kerr [6] for the critical (resonance) velocity Vres

cr of a constant
load moving uniformly along an axially compressed Euler–Bernoulli beam on an elastic
foundation. If the load moves with Vres

cr , the steady state solution of the problem is infinite.
Now the following question can arise: Why is it of interest to analyze the instability
phenomenon if it can occur only for velocities larger than the critical velocity Vres

cr leading
to resonance? To answer this question, one can now analyze the effect of the viscosity of
the foundation on the instability phenomenon (Vinst

cr ) and on the amplitude of the steady
state beam vibrations.

First assume that the steady state vibrations of the beam exist. Then the expression for
these vibrations can be obtained from equation (7). To this end one can formally apply
the inverse Laplace transform to equation (7) taking into account the pole s=0 only
(for a proof of this statement see the Appendix). This yields

Ust(j)=−
F
2p g

a

−a

exp(ikj)
D(k, 0)

dk. (13)

By using the contour integration method equation (13) can be rewritten in the form

Ust(j)=4iF s
n

k− kn

(k− k1)(k− k2)(k− k3)(k− k4) bk= kn

, (14)

where kn are the roots of the equation D(k, 0)=(1/4)k4 − (T+ a2)k2 − inak+1=0 which
have a positive imaginary part.

With the aid of equation (14) the steady state displacement of the beam can be
easily found by using a standard program for finding the complex roots of polynomials.
In Figure 5 the maximum steady state beam deflection (relative to the static deflection)

Figure 5. The ratio of the maximum steady state displacement of the beam and the static beam displacement
versus the load velocity for different values of the foundation viscosity.
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Figure 6. The critical viscosity of the foundation versus the compressional axial force.

as a function of the load velocity is depicted for different values of the foundation
viscosity (T=0·7). It is shown in the figure that for small viscosities (n=0·1) there
is a large dynamical amplification of the beam deflection for the critical (resonance)
velocity Vres

cr . When the viscosity grows, the dynamical amplification becomes smaller
and there is a critical viscosity of the foundation ncr after which the static displacement
is maximal.

The dependency of ncr (critical viscosity) upon the compressional force in the beam is
depicted in Figure 6. As a consequence of these results it is interesting to note that the
critical viscosity decreases when the axial compressional force increases. This implies that
the resonance vibrations of the axially compressed beam will be damped by a smaller
viscosity than vibrations of the beam without compression. However, the static
displacement of the beam grows when the compressional force increases.

Coming back to the main problem, one can now ask: Can the instability occur for an
overcritical viscosity? If so, this phenomenon is of practical importance, since it can take

Figure 7. The dependency M*(a) for different viscosities of the foundation (T=0·7).
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place for parameters of the system when there is no dynamical amplification due to the
load (the instability occurs due to the presence of the mass).

By analyzing the roots of the equation (8) one can give a positive answer to this question.
In Figure 7 the lines are depicted (dependencies of M* versus a) which separate the
instability domain from the domain where the beam vibrations are stable. Each line is
related to a different value of the foundation viscosity. The domain located above a line
is the instability domain. The compressional force is taken as T=0·7. It is shown in the
figure that the instability still occurs for overcritical viscosities, although the instability
starts at larger velocities (for a fixed mass) as the viscosity increases.

Thus, with increase of the foundation viscosity it becomes more and more important
to take into account the instability phenomenon. The reason is that the resonance
vibration due to the moving load can be effectively damped (even totally for an over-
critical viscosity); however, the instability domain is then only moved to the higher
(M, a) domain.

5. CONCLUSIONS

The instability of vibrations of a mass moving uniformly along an axially compressed
beam on a viscoelastic foundation has been investigated. Instability has been found,
implying that the amplitude of the system vibrations grows exponentially in time. It has
beem confirmed that the velocity Vinst

cr at which the instability starts, decreases with an
increasing compressional force.

Furthermore, the effect of the foundation viscosity upon Vinst
cr has been analyzed. It has

been shown that when the viscosity increases the instability domain moves towards the
region of larger velocities and masses. The instability even occurs for overcritical viscosities
of the foundation when there is no dynamical amplification of the steady state vibrations
due to resonance.
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APPENDIX

Assume that the problem (1) possesses a steady state solution. Then, evidently, the beam
displacement under the constant force P has to be constant in steady state. This implies



. .   . . 576

that d2U	 0/dt2 =0 and the first of equations (1) takes the form (after introduction of the
dimensionless variables and parameters)

12Ust

1t2 +
1
4

14Ust

1y4 +T
12Ust

1y2 + n
1Ust

1t
+Ust =−Fd(y− at). (A1)

If the beam motion approaches the steady state (from the point of view of an observer
moving with the load) the deflection of the beam will appear static (see, for example,
reference [6]). Thus one can reduce the partial differential equation (A1) into an ordinary
one by introducing the moving reference system j= y− at. This gives

1
4

14Ust

1j4 + (T+ a2)
12Ust

1j2 − an
1Ust

1j
+Ust =−Fd(j) (A2)

Now applying the Fourier transform

W	 k(k)=g
a

−a

Ust(j) exp(−ikj) dj

to equation (A2), one obtains

W	 k =−
F

k4/4− k2(T+ a2)−ikan+1
. (A3)

Finally, inverting equation (A3) yields

Ust(j)=−
F
2p g

a

−a

exp(ikj) dk
k4/4− k2(T+ a2)−ikan+1

,

which is identical to equation (13).


